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Optical communications over space channels (satellite-to-satellite or deep-space-to-
relay-satellite) are commonly designed as pulse-position-modulated (PPM) laser links.
When coding is needed to improve the link performance, it is advantageous to use
Reed-Solomon (RS) block codes over the PPM frames to obtain the largest degree of error
correction. Since RS codes can correct both symbol errors and symbol erasures, a
question arises as to the best way to demodulate the PPM laser fields in order to generate
the input symbols for the RS decoder. The method selected for demodulating {converting
the received laser field to digital symbols) will define the erasure and transmitted symbols
of the laser link, and therefore will determine the word error probabilities of the system.
In this paper, several possible demodulating schemes were considered, and the effect of
each on RS decoding performance was computed. This computation was carried out for
various optical receiver models, and required fairly lengthy numerical analysis to deter-
mine accurate word error probabilities when the RS code lengths are long. It is shown
that simple threshold decisioning of pulse slots will produce performance that degrades
as the background noise increases. This is caused by the generation of too many erasures
for the RS decoder to handle. We propose a decision scheme, delta-max demodulation,
which offers improvement over threshold decisioning by redefining the generation of an
erasure.

l. Introduction

In this paper we study the M-ary optical pulse-position-
modulation (PPM) communication system shown in Fig. 1.
Source bits are encoded into channel symbols from an M-ary
alphabet, which are used to generate a PPM laser pulse
sequence. The optical pulse is transmitted to the optical
receiver and photodetected. The photodetector produces ran-
dom count variables for each slot corresponding to a PPM
frame. The count variables are converted back to channel
symbols for the Reed-Solomon (RS) decoder. The latter pro-
vides error correction capability for decoding the source bits.

A question arises as to how the observed photodetected counts
should be converted to channel symbols so as to obtain the
best RS decoding performance. This report addresses this
question.

If no RS encoding is used (the source bits are directly
blocked into PPM symbols), maximum likelihood decoding,
using the counts as observables, requires a maximum count
selection for each PPM frame, with a random choice among
any count ties (more than one maximum count). If the result-
ing error probability is not low enough, coding must be used
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to improve performance, with the source bits first encoded
into channel words, then the words sent as PPM pulses. When
coding is inserted, it is no longer obvious that the maximum
likelihood frame decisioning is optimal, since it does not allow
for channel symbol erasures. When background noise is negligi-
ble, it has been argued (Refs. 1,2) that matched RS coding
appears as a natural encoding scheme, since only channel
erasures can occur, and RS decoding has maximal capability
for correcting erasures. The RS code size is selected to match
the PPM frame size (channel alphabet size) and maximum
count demodulation is used, with all ties interpreted as era-
sures. F.i the noiseless case, an erasure can occur only if a PPM
signaling slot produces no counts.

When background noise is present, conversion of counts to
channel symbols will involve errors as well as erasures. The
number of erasures that will occur will depend on how the
conversion defines an erasure. Since RS decoding can correct
more erasures than errors, a question then arises in determin-
ing the best way to allocate erasures and errors by proper
selection of the conversion rule. In the following sections we
examine several conversion algorithms and the resultant per-
formance of each when operating with background noise and
RS decoding. This performance will depend on the model of
the photodetector used in the optical detection receiver. If a
high gain, ideal photomuitiplier tube is assumed for the photo-
detection, the count variables are Poisson distributed with
mean values dependent on the received field during that slot.
If a high-gain random photodetector is assumed, the counts are
more nearly discrete-Gaussian distributed, centered around the
mean multiplied count, with a variance dependent on the
detector excess noise factor. In each case the postdetection
thermal noise can be neglected.

ll. Count-Symbol Conversion Rules

In this study we consider two different methods for con-
verting the observed photodetected counts to channel symbols
and erasures. The methods differ primarily in the way a
symbol decision is made and the way in which an erasure is
defined. The methods are labeled as threshold demodulation
and delta-max (6-max) demodulation. In threshold demodula-
tion a threshold vy is set, and any count above 7y is called a
pulse and a count below v is called a zero. A symbol decision
is made only if a single pulse occurs in a PPM frame, selecting
the symbol corresponding to the pulse location. All other
situations are defined as an erasure. This sequence of frame
decisions is then fed into the RS decoder. In §-max demodula-
tion, a symbol is selected only if no other count is within  of
the maximum count. Otherwise an erasure is declared. Note
that both these methods have the advantage that the number
of erasures can be controlled by adjustment of the parameters
Yand$.
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lll. Poisson Counting, 5-Max Demodulation

Consider a Poisson count model and §-max demodulation
for generating the RS symbols. In optical PPM communica-
tion, every log,M binary data bits are transmitted by placing
an optical light pulse in one of the M designated pulse slots. M
slots constitute a PPM frame (Ref. 3). Thus each pulse repre-
sents a symbol, depending on its pulse slot location. These
log,M binary bits therefore correspond to a Reed-Solomon
(RS) symbol. At the PPM optical receiver, a photodetector
counts the number of photons in each slot. Let the M photon
counts {ni}?'il correspond to the M time slots. Let n be a
vector with dimension M with elements n;. Then the probabil-
ity of receiving n given a pulse is sent in jth time slot is (note
n;’s are independent Poisson distributed random variables)

K+K) 7 _x + i
p(nls].)=(’—s——i)— *s K)H( ) e b(l)

z#]

n!
j

where K is the average number of received photons per PPM
frame and K, is the average number of background noise
photons per slot. We notice that the expected number of
photons we receive in the signal slot is K + K, and the
expected number of photons in other slots each is K. We set a
level A 2 1 and we make a tentative decision for signal send in
the jth slot if for some j

p(nls)

p(n[s)>A Vi#j )

and make no tentative decision (erasure) otherwise. Equation
(2) is equivalent to

In p(nls].) >InA+Inp(nis) Vi#j 3)
Redefine
(K +K, \°
N )
as ( K, ) @

for some & > 0. Then using (1) in (3) we get equivalently

n>8+nVi#j (5)

Hence the maximum count test in (5) is equivalent to testing if
the likelihood ratio in (2) is suitably large. The corresponding
demodulator structure is shown in Fig. 2, with decision rule
given in (5).



We wish to find expressions for the probability of correct
detection of transmitted signal P, the probability of incorrect
detection of transmitted signal Pg, and the probability of no
tentative decision (erasure) Pp. We will correctly detect the
true signal slot j corresponding to transmitted laser pulse s;, if
(5) is true. The probability of this occurring is

P, = Pr{n].>n1 +6,n}.>n2+5,...,n/‘>n]._1 +8,
n].>nl.+1+6,...,|s],}

= 3 Prin,<k-8Vi#jls}Prin=kls}
k=6+1

S k—-6-1 M-1

= > [E Pos(i,Kb)] Pos(k,K +K,) (6)
k=6+1 =0

where

i

Pos (i,n) = >\— e (7)
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By change of variable we get

Pc=Z

k=0

k M-1
[Z Pos (i,Kb)] Pos(k+8+1,K +K,)

i=0

®)

On the other hand we make an incorrect decision if for a given
transmitted pulse in jth time slot, for any i #/, we have

n.>n_ +8Vm#i 9)
L m

Then

Py = Pr{n’.>nm+6 Vmii,anyi¢j|sj}

=M-1) Y Prin, <k-8Ym#ils}Prin =kls}
k=6+1

1

-0 TS
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M-2
Pos (i,Kb)]

k=6-1
-[Z Pos (i, KS+Kb)] * Pos (k, K,) (10)

i=0

By change of variable we get

oo k M-2
Pg = M-1) D, I:Z Pos (i,Kb)]
k=0 Li=0

k
[Z Pos(i,KS+Kb)] - Pos(k+5+1,K,)

i=0
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Clearly the probability of no tentative decision (probability
of erasure) is

P, =1-P,-Pg (12)

A Reed-Solomon code of code block N =M - 1 and infor-
mation block K can produce a correct code word if s the
number of decoder input symbol errors and e the number of
decoder input symbol erasures satisfy the following relation

ste<N-K+1 (13)

From this relation we note that the RS code can correct twice
the number of erasures than the number of symbol errors. It is
for this reason that we have tried to introduce some soft
decisions at the demodulator in order to produce more era-
sures. Of course, if we expand the region of no hard decisions
in the decision region by too large an amount, the number of
erasures will increase in a given block code, and the RS
decoder will not be able to correct them.

For the RS code three events may occur. The first event
occurs if the number of error and erasure symbols satisfies
(13), for which the decoder can correctly decode the code
word, and therefore the information block. The second event
occurs when (13) is not satisfied, and the combination of
symbol errors and symbol erasures is such that the received
code block resembles a code signal other than the transmitted
one (i.e., the received code block is closer to some other code
signal than the transmitted code signal).

In this second event the decoder errs, and gives an incorrect
decoded code word. The third event is a complement of the
two above events. In this third event, the decoder fails to
decode and produces the undecoded channel symbols and
randomly decides on erasures. For large M the probability of
the second event, for the practical range of interest is usually
very small and can be ignored. The probability that the incor-
rect code word is selected by the decoder, P, (RS), is (Ref. 4)
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g = max(N-K+1-2s0) (15)
and the bit error probability P, (RS) is
N N-s
_ M N (N— s\(ste
Py(RS) = 2M-1) Z Z (s) e )( N )
§=0 e=q
- Py PEPYe (16)
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Equation (16) has been numerically evaluated for the
Poisson channel. We considered three classes of RS codes: the
(255,127) code with code rate 1/2, the (255,191) code with
code rate 3/4, and the (255,223) code with code rate 7/8.
These codes are matched to a PPM frame with M = 256 slots.
For each case we plotted P,(RS) in (16) versus K for various
K, and several values of 6. The results are shown in Figs. 3
through 8. We see that the performance degrades as the noise
count K, increases and as the correction capability of the RS
code decreases. In addition, performance is uniformly
improved as & is decreased, with best performance occurring at
6 = 0. This corresponds to a maximum likelihood decision on
each PPM frame with all maximum ties denoted as erasures. In
other words, there appears to be no advantage in widening the
erasure definition for these parameter values.

IV. Poisson Counting, Threshold
Demodulation

PPM threshold demodulation with Reed-Solomon decoding
has been studied for the case of extremely low background
noise! and thermal noise (Ref. 4). Here we examine the high-
gain photodetector case so that the Poisson Counting Process
is a valid model. In threshold demodulation, we set a threshold
7 and count the number of received photons in each slot. We
then compare each number with 7: if it exceeds 7, we claim
signal detection in that time slot. If it does not, we claim noise
detection in that time slot. We can detect the transmitted
signal correctly only if in one of the slots the number of
photons exceeds v, while in all other slots it does not. Then if
P, denotes the probability of signal detection in a time slot,
and P,, denotes the probability of correct detection of noise

1Only dark current was assumed in Ref. 4 and can be treated as
extremely low background noise.
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in a time slot, the probability of correct PPM signal detection
is

= M-1
P, =P, P a7
The probability of incorrect detection is
- _ - _ M—2
Pe=WM-1)(1 P Pdn)Pdn (18)
and the probability of erasure is
P =1-P,-P (19)
For the Poisson channel
= (KK &k,
= v’
P.o= 3 T (20)
k=y+1
v (K¢ k
- b b
P, = Z Rk (21)
k=0

Equations (17)-(21) can again be used in (16) to evaluate
performance. The numerical computation has been carried out
for the same code and count parameters as in the previous
section, and the results superimposed in Figs. 3 to 8. The
thresholds were set at vy =1 and 2 counts, while y =0 corre-
sponds to no threshold (any observed count was considered a
pulse). We see that performance with threshold demodulation
also degrades with noise count and decreasing code capability,
but is much more sensitive to noise levels. In particular we
note a severe degradation when no threshold is used and the
noise increases from 107 to 1073 counts. Note that in all
cases the 8-max procedure, with § -0, is uniformly better
than the threshold tests, although the two perform similarly if
the noise count is low enough. Also note that in Figs. 3, 5
and 7 the optimum threshold y changes with K.

V. Gaussian Counting, 5-Max Demodulation

When nonideal photodetectors are introduced, the count
statistics no longer are Poisson. Although primary photoelec-
trons released from photoemissive surfaces are usually
governed by Poisson statistics, secondary electrons generated
via multianode secondary emissions, as in photomultiplier
vacuum tubes or by avalanche photodetectors (APD), gener-
ally produce more symmetrical distributions. The later distri-
butions can often be modeled by Gaussian-shaped distri-
butions (Refs. 5, 6).



Let the PPM slot integrations generate the sequence of
secondary count variables ri,-, i=1,...,M,where the mean and
variance of n;’s are as follows:

A
In signal slot j : E{n].}= m, = GK *+K,)

of,j = o2 = G’F (K, +K,) (22)
: . a
In noise slot i: E{ni}— my = GKb
2 2 2 _ 2
0, =04 = G°FK, (23)

1

where G is the photomultiplier or APD gain and F denotes its
excess noise factor.

Let n be a vector with dimension M with elements n;. Then
the probability of receiving n given that a pulse is sent in the
jth time slot is

—(n-m )2 ~(n,~m)?
—t 17 (ny=mg)
2 M )
4 20 4 20
— 1 1 0 0
p(nls.) = ———e I I -e (24)
! 2702 k=1 /20>
1 k) 0

where ¢, and ¢, are normalization factors.

We again set a level A > 1 and we make a tentative decision
for signal sent in the jth slot if for some j

p(nls)
p(nls,)

>A Vi#j (25)

and make no tentative decision (erasure) otherwise. Equiva-
lently,

Inp(nls)>InA+Inpnls) V i#] (26)

Redefine

A = exp [5(d? - 02)/207 0% 27
for some & = 0. Then using (24) in (26) we get equivalently
Vi#j

n].>\/8 +n?

(28)

The corresponding demodulator structure is as shown in
Fig. 2, with decision rule given in (28).

Then
P, = Prin>+6 +n? Vis#jls}

o0

E Pr {ni<\/k2 -8 Vi#jls}Pr{n =kls}

k>\8
) M-1
= E E P, () P (k) (29)
k>/5 Lo<i</k2-5
where
~(k-m)?
P(k) =———e ; 1=0,1 (30)
2n0
and ¢, is a normalization factor, such that
E Pik) =1 (1)
k=0
Similarly
Py = Prin,>+/n2 +8 Vm#iany i #]ls;}
o M-2
= M- 1) E Z P
>/5 Lo<ici/k®-s
E : P (i) | Py(k) (32)
0<i<y/k?-5
and finally
P, = 1-P,-F (33)
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Since G is very large for numerical computations we can
approximate summations in (29) and (32) by integrations.
Then we get

o Gt [T 1_Q<@>
(&
V27 T,

[og

1

_Q< (0, p+m)*-8-m,

2
) e 1% gy (34)

and

M- 1) cﬁ”“lcl °° m,
V2T \/5_—m0 0
%

Woyz+my)* - &-m, m,
- 1 — Q _
Q( % ( Ul)
W(oyz+ mo)2 —6-m, \ 2
-0 - ce 2 gs (35)
1 -
where
A oo
Ox) = —\/‘2—17— ) P12 gr
= 0.5 Erfc(x/7/2) (36)

Equation (16), with (33), (34), and (35) inserted, gives the
verformance for the photomultiplier or APD case. Results of
the computation are shown in Figs. 9 through 11 for 6-max
demodulation. Each §-max curve has been optimized at each
value of K by adjusting & for minimal P, (RS).
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V1. Gaussian Counting, Threshold
Demodulation

Here demodulator concept is the same as discussed in
Section IV. We can use results of Section IV, but replacing P4
and P,;,, with

2

(k-m )
Cl 20%
Pds = — - e 37
k=y+1 v 27T01
(k—mo)2
C 2 2
P = 0 %o (38)

Y
dan § ;
k=0

Again approximating summations by integrations we get

Y- m
PdS:Q( ) Cl (39)

m Y- m
P, =[ -0 (-(i) -0 ( - 0)] ¢ (40

Numerical results using (37) - (40) are included in Figs. 9
through 11. It again follows that uniformly better performance
occurs with §-max demodulation over threshold demodulation.

e
\ 2710?)

and

VI. Conclusion

This paper proposes a delta-max demodulator for Reed-
Solomon coded M-ary PPM modulation over an optical com-
munication channel. This delta-max demodulator is compared
with the threshold demodulator which is currently in use.
Both of these demodulators have identical performance in
the absence of background noise. As the intensity of back-
ground noise increases, the delta-max demodulator outperforms
the threshold demodulator. Also, the higher the code rate,
the more advantage the delta-max demodulator has.
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Fig. 2. Demodulator structure
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